Тригонометрическое уравнение — уравнение, содержащее неизвестное под знаком тригонометрической функции.
Если | a | > 1, то уравнение sin x = a не имеет корней. Например, уравнение sin x = 2 не имеет корней.
Если | a | ≤ 1, то корни уравнения выражаются формулой x = ( —1)n arcsin a + πn, n ∈ Z.
Частные случаи:
1. sin x = 0 ⇒ x = πn, n ∈ Z.
2. sin x = 1 ⇒ x = π/2 + 2πn, n ∈ Z.
3. sin x = -1 ⇒ x = -π/2 + 2πn, n ∈ Z.
Если | a | > 1, то уравнение cos x = a не имеет корней. Например, уравнение cos x = —1,5 не имеет корней.
Если | a | ≤ 1, то корни уравнения выражаются формулой x = ±arccos a + πn, n ∈ Z.
Частные случаи:
1. cos x = 0 ⇒ x = π/2 + πn, n ∈ Z.
2. cos x = 1 ⇒ x = 2πn, n ∈ Z.
3. cos x = -1 ⇒ x = π + 2πn, n ∈ Z.
Уравнение tg x = a имеет корни при любом значении a. Корни уравнения выражаются формулой x = arctg a + πn, n ∈ Z.
Уравнение ctg x = a имеет корни при любом значении a. Корни уравнения выражаются формулой x = arcctg a + πn, n ∈ Z.
Этот способ используется для уравнений вида a · sin x + b · cos x = с.
Тригонометрические формулы Тригонометрические функции Таблица синусов Таблица косинусов Теорема синусов Теорема косинусов Косинус |