Функция вида y = loga х (где а > 0, а ≠ 1) называется логарифмической.
1) Область определения логарифмической функции — множество всех положительных чисел. Это следует из определения логарифма, так как выражение logax имеет смысл только при x > 0.
2) Множество значений логарифмической функции — множество R всех действительных чисел.
Это следует из того, что для любого действительного числа b есть такое положительное число x, что logax = b, т.е. уравнение logax = b имеет корень. Такой корень существует и равен
x = ab, так как logaab = b.
3) Логарифмическая функция y = logax является возрастающей на промежутке x > 0, если a > 0, и убывающей, если 0 < a < 1.
4) Если a > 1, то функция y = logax принимает положительные значения при x > 1, отрицательные — при 0 < x < 1. Если 0 < a < 1, то функция y = logax принимает положительные значения при 0 < x < 1, отрицательные — при x > 1. Это следует из того, что функция y = logax принимает значение , равное нулю, при x = 1 и является возрастающей на промежутке x > 0, если a > 1, и убывающей, если 0 < a < 1.
Ниже представлены графики логарифмических функций при a > 1 (1); 0 < a < 1 (2).
Стоит отметить, что график любой логарифмической функции y = logax проходит через точку (1 ; 0)